针对传统弹药毁伤效能评估方法在现代战场中的不足,提出了一种基于人工智能(AI)技术的智能评估体系,以解决评估效率低、精度不足和实时性差等问题。首先分析了靶场试验、理论模型和经验公式等传统方法的局限性,指出了它们难以适应现代战争中复杂目标、多样场景和动态环境的需求。针对这些挑战,引入机器学习、深度学习和强化学习等AI核心技术,构建了一个数据驱动的评估体系,通过智能建模和自动化优化,提升弹药毁伤效能的预测精度与实时性。还详细阐述了智能评估平台的系统架构,涵盖数据采集、多源数据融合、AI建模与效果反馈等模块,强调了模型的泛化性和实战适应性。同时,还展望了多模态数据融合、小样本学习、虚拟与现实结合以及可信AI等未来研究方向。研究表明,基于AI的弹药毁伤效能评估为现代武器系统的精准评估提供了创新的理论与技术支持,推动了评估方法向智能化、高效化发展,具有重要的军事应用前景。
Abstract
To address the limitations of traditional ammunition damage effectiveness evaluation methods on modern battlefields, the work aims to propose an intelligent evaluation system based on artificial intelligence (AI) technology to solve issues such as low efficiency, insufficient accuracy, and poor real-time performance. Firstly, the limitations of traditional methods, including field tests, theoretical models, and empirical formulas were analyzed and it was pointed out that these methods were inadequate for meeting the demands of modern warfare, such as complex targets, diverse scenarios, and dynamic environments. To tackle these challenges, core AI technologies, including machine learning, deep learning, and reinforcement learning, were introduced to build a data-driven assessment system aimed at improving prediction accuracy and real-time performance through intelligent modeling and automation. The system architecture of the intelligent evaluation platform was also elaborated, covering modules for data acquisition, multi-source data fusion, AI modeling, and feedback of results, emphasizing the generalizability and adaptability of the model to real-world combat scenarios. Furthermore, future research directions were discussed, including multi-modal data fusion, small-sample learning, virtual-real integration, and trustworthy AI. The study demonstrates that AI-based ammunition damage effectiveness evaluation provides innovative theoretical and technical support for the precise evaluation of modern weapon systems, driving the development of evaluation methods toward intelligence and efficiency, with significant military application prospects.
关键词
弹药 /
毁伤效能 /
人工智能 /
机器学习 /
评估方法 /
数据融合
Key words
ammunition /
damage effectiveness /
artificial intelligence /
machine learning /
evaluation method /
data fusion
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 徐豫新, 蔡子雷, 吴巍, 等. 弹药毁伤效能评估技术研究现状与发展趋势[J]. 北京理工大学学报, 2021, 41(6): 569-578.
XU Y X, CAI Z L, WU W, et al.Current Research and Development of Ammunition Damage Effect Assessment Technology[J]. Transactions of Beijing Institute of Technology, 2021, 41(6): 569-578.
[2] 徐功慧, 李家波, 赵红光, 等. 水中兵器毁伤效能评估现状及发展[J]. 工程爆破, 2016, 22(2): 38-42.
XU G H, LI J B, ZHAO H G, et al.Situation and Development of the Damage Efficiency Evaluation on Underwater Weapons[J]. Engineering Blasting, 2016, 22(2): 38-42.
[3] 程淑杰, 徐露萍, 梁争峰, 等. 北约不敏感弹药试验方法回顾及进展[J]. 装备环境工程, 2024, 21(8): 59-68.
CHENG S J, XU L P, LIANG Z F, et al.Review and Update of NATO Insensitive Munitions Tests Procedures[J]. Equipment Environmental Engineering, 2024, 21(8): 59-68.
[4] 刘彦, 柳明, 吕中杰, 等. 基于科学知识图谱的弹药毁伤评估技术发展现状与趋势研究[J]. 北京理工大学学报, 2024, 44(3): 219-230.
LIU Y, LIU M, LYU Z J, et al.Research on the Development Status and Trend of Ammunition Damage Assessment Technology Based on Mapping Knowledge Domains[J]. Transactions of Beijing Institute of Technology, 2024, 44(3): 219-230.
[5] 贺倩. 人工智能技术发展研究[J]. 现代电信科技, 2016, 46(2): 18-21.
HE Q.Development of Artificial Intelligence Technology[J]. Modern Science & Technology of Telecommunications, 2016, 46(2): 18-21.
[6] 张振博, 蔡斌. 大数据、云计算与人工智能技术的融合与发展[J]. 数字技术与应用, 2025, 43(1): 164-166.
ZHANG Z B, CAI B.Integration and Development of Big Data, Cloud Computing and Artificial Intelligence Technology[J]. Digital Technology & Application, 2025, 43(1): 164-166.
[7] 王晓光, 何晓夫, 马晓冬, 等. 人工智能在航空制导弹药领域的应用初探[J]. 飞航导弹, 2019(2): 54-60.
WANG X G, HE X F, MA X D, et al.Preliminary Study on the Application of Artificial Intelligence in the Field of Aviation Guided Ammunition[J]. Aerodynamic Missile Journal, 2019(2): 54-60.
[8] 何绍溟, 王江, 宋韬, 林德福. 人工智能技术在武器中的应用综述[J]. 飞航导弹, 2021, 7: 41-48.
HE S M, WANG J, SONG T, et al.Overview of the Application of Artificial Intelligence Technology in Weapons[J]. Aerodynamic Missile Journal, 2021, 7: 41-48.
[9] 张妮, 徐文尚, 王文文. 人工智能技术发展及应用研究综述[J]. 煤矿机械, 2009, 30(2): 4-7.
ZHANG N, XU W S, WANG W W.Summary on Development and Application of Artificial Intelligence Technology[J]. Coal Mine Machinery, 2009, 30(2): 4-7.
[10] ZHANG X H, XU T H, WANG Z. A Practical Formula for Penetration Depth of Rigid Projectiles into Rock and Concrete Considering the Non-Scaling Effect[EB/OL]. Defence Technology, 2025: 1-10. (2025-03-6). https://www.sciencedirect.com/science/article/pii/S2214914725000789?via%3Dihub.
[11] MEI Q Q, YU H F, MA H Y, et al.Experimental and Numerical Simulation on the Penetration for Basic Magnesium Sulfate Cement Concrete[J]. Materials, 2023, 16(11): 4024.
[12] 汪亚明, 马永开. 论标准成本法在靶场试验成本管理中的应用[J]. 国防科技, 2009, 30(3): 53-57.
WANG Y M, MA Y K.On Application of Standard Costing Method in Range Test Cost Management[J]. National Defense Science & Technology, 2009, 30(3): 53-57.
[13] KIM S, KANG T H.Development of Energy-Based Impact Formula: Part I: Penetration Depth[J]. Applied Sciences, 2020, 10(14): 4964.
[14] WANG L Q, QIAN B W, ZHANG C Y, et al.A Review of Artificial Intelligence Techniques in Blast Field Shockwave Pressure Testing[J]. Journal of Measurements in Engineering, 2025, 13(2): 45-58.
[15] LI Q M, REID S R, WEN H M, et al.Local Impact Effects of Hard Missiles on Concrete Targets[J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 224-284.
[16] ZENG C E, YU M Z, SHAN C S, et al.Evaluation of HWIL Simulation Technology for Guided Weapons of the US Army[J]. Journal of Spacecraft TT&C Technology, 2005, 24(3): 75-83.
[17] DOU J B, WANG X B, YANG H J, et al.Design and Application of Hardware-in-the-Loop Simulation System for Infrared Imaging Guide Missile Test and Evaluation[J]. Journal of System Simulation, 2024, 36(2): 20.
[18] BUFORD J A Jr, PAONE T. Using Hardware-in-the-Loop (HWIL) Simulation to Provide Low-Cost Testing of TMD IR Missile Systems[C]//Technologies for Synthetic Environments: Hardware-in-the-Loop Testing III. Orlando: SPIE, 1998.
[19] WINTERS D T, GARCIA J C, NEIGHOFF T M, et al.Development of a Kinetic Warhead Hardware-in-the- Loop Simulation[C]// Technologies for Synthetic Environments: Hardware-in-the-Loop Testing VI. Orlando: SPIE, 2001.
[20] JORDAN M I, MITCHELL T M.Machine Learning: Trends, Perspectives, and Prospects[J]. Science, 2015, 349(6245): 255-260.
[21] QING X.Machine Learning Based Quantitative Damage Monitoring of Composite Structures[J]. International Journal of Damage Mechanics, 2022, 13(2): 36.
[22] HO N X, LE T T, DINH T H, et al.Prediction of Buckling Damage of Steel Equal Angle Structural Members Using Hybrid Machine Learning Techniques[J]. Scientific Reports, 2025, 15(1): 4696.
[23] YANN L C, BENGIO Y, HINTON G.Deep Learning[J]. Nature, 2015, 521(7553): 436-444.
[24] 徐艺博, 于清华, 王炎娟, 等. 基于多源信息融合的巡飞弹对地目标识别与毁伤评估[J]. 系统仿真学报, 2024, 36(2): 511-521.
XU Y B, YU Q H, WANG Y J, et al.Ground Target Recognition and Damage Assessment of Patrol Missiles Based on Multi-Source Information Fusion[J]. Journal of System Simulation, 2024, 36(2): 511-521.
[25] 毛致远, 段超伟, 宋浦, 等. 基于有效冲量的水下爆炸冲击波对平板结构的毁伤准则[J]. 高压物理学报, 2023, 37(2): 132-142.
MAO Z Y, DUAN C W, SONG P, et al.Criterion of Plate Structure Damage Caused by Underwater Explosion Shock Wave Based on Effective Impulse[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 132-142.
[26] TERVEN J, CÓRDOVA-ESPARZA D M, ROMERO- GONZÁLEZ J A. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS[J]. Machine Learning and Knowledge Extraction, 2023, 5(4): 1680-1716.
[27] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R- CNN[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017.
[28] ATAEI S, ADIBNAZARI S, ATAEI S T. Data-Driven Detection and Evaluation of Damages in Concrete Structures: Using Deep Learning and Computer Vision[EB/OL]. (2025-01-21) [2025-09-07]. https://arxiv.org/abs/2501.11836.
[29] ATTARI N, OFLI F, AWAD M, et al.Nazr-CNN: Fine- Grained Classification of UAV Imagery for Damage Assessment[C]// 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA). Tokyo: IEEE, 2017: 50-59.
[30] AL SHAFIAN S, HU D.Integrating Machine Learning and Remote Sensing in Disaster Management: A Decadal Review of Post-Disaster Building Damage Assessment[J]. Buildings, 2024, 14(8): 2344.
[31] GAUDET B, DROZD K, FURFARO R. Deep Reinforcement Learning for weapons to Targets Assignment in a Hypersonic Strike[EB/OL]. (2023-10-27) [2025-09-07]. https://arxiv.org/abs/2310.18509.
[32] LI S, HE X Y, XU X, et al.Weapon-Target Assignment Strategy in Joint Combat Decision-Making Based on Multi-Head Deep Reinforcement Learning[J]. IEEE Access, 2023, 11: 113740-113751.
[33] POPE A P, IDE J, MIĆOVIĆ D, et al. Hierarchical Reinforcement Learning for Air-to-Air Combat[EB/OL]. (2021-05-03) [2025-09-07]. https://arxiv.org/abs/2105.00990.
[34] SVENMARCK P, LUOTSINEN L, NILSSON M, et al.Possibilities and Challenges for Artificial Intelligence in Military Applications[C]// Proceedings of the NATO Big Data and Artificial Intelligence for Military Decision Making Specialists' Meeting. Bordeaux: [s. n.], 2018.
[35] LI X H, CAO C C, SHI Y H, et al.A Survey of Data-Driven and Knowledge-Aware eXplainable AI[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 29-49.
[36] AWAD M, KHANNA R.Support Vector Regression[M]// Efficient Learning Machines. Berkeley, CA: Apress, 2015: 67-80.
[37] JACKINS V, VIMAL S, KALIAPPAN M, et al.AI-Based Smart Prediction of Clinical Disease Using Random Forest Classifier and Naive Bayes[J]. The Journal of Supercomputing, 2021, 77(5): 5198-5219.
[38] PURWONO P, MA’ARIF A, RAHMANIAR W, et al. Understanding of Convolutional Neural Network (CNN): A Review[J]. International Journal of Robotics and Control Systems, 2022, 2(4): 739-748.
[39] 徐永会, 袁诗桐. 一种基于图像变化检测的目标毁伤评估方法[J]. 兵工自动化, 2025, 44(3): 66-69.
XU Y H, YUAN S T.A Target Damage Assessment Method Based on Image Change Detection[J]. Ordnance Industry Automation, 2025, 44(3): 66-69.
[40] BHARATI P, PRAMANIK A.Deep Learning Techniques—R-CNN to Mask R-CNN: A Survey[C]// Computational Intelligence in Pattern Recognition. Singapore: Springer Singapore, 2020: 657-668.
[41] VANĨCEK P, KRAKIWSKY E, CRAYMER M, et al. Robustness Analysis[J]. 2023.
[42] THAPLIYAL N, AERI M, KUKREJA V, et al.Navigating Landscapes through AI: A Comparative Study of EfficientNet and MobileNetV2 in Image Classification[C]//2024 International Conference on Emerging Technologies in Computer Science for Interdisciplinary Applications (ICETCS). Bengaluru, India. IEEE, 2024: 1-4.
[43] NAGARGOJE A, KANKAR P K, JAIN P K, et al.Application of Artificial Intelligence Techniques in Incremental Forming: A State-of-the-Art Review[J]. Journal of Intelligent Manufacturing, 2023, 34(3): 985-1002.
[44] 王凯, 陈春. 基于多源情报的陆军远程火力毁伤效果评估[J]. 兵工自动化, 2022, 41(11): 41-43.
WANG K, CHEN C.Assessment of Army Long-Range Firepower Damage Effectiveness Based on Multi-Source Intelligence[J]. Ordnance Industry Automation, 2022, 41(11): 41-43.